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Abstract— Proprioception, or the perception of the configu-
ration of one’s body, is challenging to achieve with soft robots
due to their infinite degrees of freedom and incompatibility with
most off-the-shelf sensors. This work explores the use of inertial
measurement units (IMUs), sensors that output orientation
with respect to the direction of gravity, to achieve soft robot
proprioception. A simple method for estimating the shape of a
soft continuum robot arm from IMUs mounted along the arm
is presented. The approach approximates a soft arm as a serial
chain of rigid links, where the orientation of each link is given
by the output of an IMU or by spherical linear interpolation
of the output of adjacent IMUs. In experiments conducted on
a 660mm long real-world soft arm, this approach provided
estimates of its end effector position with a median error of less
than 10% of the arm’s length. This demonstrates the potential
of IMUs to serve as inexpensive off-the-shelf sensors for soft
robot proprioception.

Modeling, Control, and Learning for Soft Robots; Kine-
matics; Sensor Fusion

I. INTRODUCTION

Proprioception, or the perception of the configuration of
one’s own body, is essential to robot planning and control.
The configuration of a rigid-bodied robot can be fully
described by a finite set of joint displacements which are
readily measured using off-the-shelf sensors such as joint
encoders. The configuration of a soft robot, however, is
infinite dimensional and cannot readily be measured using
off-the-shelf components.

To address this shortcoming, a number of sensing tech-
nologies have been developed specifically for soft robots
[1]. Flexible resistive sensors infer strain by measuring
the change in resistance of channels filled with conductive
liquids such as liquid metals [2], [3] or ionic liquids [4].
Flexible capacitive sensors estimate changes in geometry by
measuring changes in capacitance of stretchable electrodes
separated by an elastomeric dielectric layer [5]. Optical
strain sensors detect changes in geometry by measuring
variations in intensity, frequency, or phase of light in a
light transmission medium [6]–[9]. Magnetic strain sensors
infer displacement by measuring the response of a Hall
effect sensor embedded in a soft medium relative to a fixed
magnetic field [10], [11]. Inductive strain sensors estimate
changes in geometry by measuring inductance variations
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Fig. 1: (a) The soft arm platform, with IMUs labeled, used
to evaluate our estimation methods. (b) A serial-chain rigid-
body model approximation of the soft arm motion is shown.

caused by transducer mechanisms such as coil geometry and
mutual inductance [12]–[14]. Deformable sensing fabrics or
“skins” that incorporate several soft sensing technologies into
a single versatile package have also been developed [15],
[16].

Each of these sensor types measure the strain of a flexible
element. Using strain measurements to construct an estimate
of the pose of a soft arm requires integrating strain along
the length, imposing accuracy limitations since small inac-
curacies in strain along the length will compound into much
larger pose errors. Furthermore, while each sensor type has
its own unique pros and cons, a common issue among them
is nonlinear time-variant behavior and hysteresis. This has
motivated the use of machine learning techniques to identify
the mapping from raw sensor output to deformation from
data [17]–[19].

An alternative to embedded sensors is an external motion
capture system. Such systems utilize an array of externally-
mounted infrared cameras to track the position of reflective
markers in 3D space. By coating a soft robot in reflective
markers one can use motion capture data to estimate the
robot’s shape. Commercial motion capture systems offer an
accurate and reliable method for sensing the deformation
of soft robots, but they are expensive and impose severe
restrictions on the environment in which a robot can operate.
Motion capture systems are not portable, are sensitive to
lighting conditions, and are susceptible to errors due to
occlusions, making it impossible to use them outside of a



controlled laboratory setting.
This paper explores the use of Inertial Measurement Units

(IMUs) for sensing the shape of continuum soft robots.
IMUs are off-the-shelf orientation sensors that combine a
three-axis accelerometer, three-axis gyroscope, and three-
axis magnetometer with an on-board sensor fusion algorithm.
Due to their extensive use in smartphones, tablets, and
wearable fitness trackers, IMUs have become widely avail-
able and inexpensive, and there are many well-developed
computational resources for integrating them into robotic
systems [20].

Previous work has explored the use of IMUs for pro-
prioception in soft robots. In [21], two IMUs were used
in combination with motor encoders to estimate the pose
of a single segment continuum body manipulator assuming
constant curvature. In [22] two IMUs were embedded into
the ends of an elastomeric liquid metal strain sensor to form
a hybrid sensor capable of measuring the angle of deflection
of a soft bending actuator and the joint position of a rigid
robot arm. In both of these cases, IMUs were combined with
other sensor types (i.e. encoders, strain sensors) to estimate
the pose of a one segment soft structure.

The contribution of this paper is a simple method for
estimating the shape of a full continuum arm using only
IMUs. The approach approximates the infinite-dimensional
shape of a continuum arm with a finite-dimensional rigid-
body model, and does not require any prior training. In real-
world validation experiments, it is shown to estimate end-
effector position to within 10% of arm length of median
error, putting its accuracy on par with that of other soft
sensors while avoiding the limitations imposed by external
motion capture systems.

The remainder of this paper is organized as follows.
Section II describes how IMU data is utilized to construct an
estimate of the shape of a robot arm. Section III describes
how the performance of the IMU-based sensing approach
was evaluated on a real-world soft arm platform. Section
IV presents the results of these experiments. Section V
discusses the results, likely sources of error, and potential
improvements. Section VI offers concluding remarks and
proposes several avenues for future work.

II. METHODS

IMU measurements provide the arm’s orientation at given
spots along the arm. This section will discuss how to use
this data to estimate the full arm shape using two different
arm parametrizations. For both of the presented models, the
arm is parameterized as a series of rigid segments.

In part II-A, one segment per IMU is used. In part II-B,
we use spherical linear interpolation to create “virtual IMUs”
to increase the number of segments without increasing the
number of IMUs. In the limit, this method approximates
a Piecewise Constant Curvature model (PCC) [23]. Both
models are constructed from IMU orientation data in the
form of quaternions, which are singularity free, as opposed
to Euler angles which suffer from the Gimbal Lock issue

[24]. Quaternions are also broadly used in computer science
and as a default IMU output format.

The models specify the shape of the arm as a collection
of joint coordinates. However, because both models represent
the arm as a series of rigid segments, it is straightforward to
compute the coordinates of any point along the length of the
arm using linear interpolation between two adjacent joints.

A. Rigid-body model
The arm is modeled by N + 1 straight links of length

LR
i , i ∈ {0, ..., N}, called segments (see Fig. 2(a)). An

IMU is fixed to each segment, ideally on the center. The
ith segment is oriented along the IMU frame defined by its
quaternion qi, i ∈ {0, ..., N} where q0 is the orientation of
the arm’s base. We define Rq(q) as the 3x3 rotation matrix
extracted from a quaternion q = a+ ib+ jc+ kd [25],

Rq(q) =

1− 2(c2 + d2) 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 1− 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(cd+ ab) 1− 2(b2 + c2)


(1)

Let x̂R
i be an estimate of the position of the joint between

segment i and segment (i− 1) according to this model. It is
computed by summing the displacements of the first i − 1
links, according to the following expression,

x̂R
i =

i−1∑
j=0

Rq(qj)

 0
0
LR
j

 (2)

Note that the superscript (·)R denotes a variable related to
the rigid-body model.

B. PCC-extended rigid-body model
To make the rigid-body model smoother and more ac-

curate, we divide each segment into n sub-segments. Each
sub-segment orientation is computed under the assumption
that the segment’s curvature is constant. As n increases, this
model approximates a PCC model.

Let us define LE
i as the distance between qi and qi+1, and

qi,k as the orientation quaternion of the kth sub-segment of
the ith segment (see Fig. 2(b)), which is computed using
spherical linear interpolation between qi and qi+1.

qi,k = slerp

(
qi,qi+1,

2k + 1

2n

)
(3)

The function slerp represents spherical linear interpolation
[26] and is defined as,

slerp(qa,qb, t) = (qbqa
−1)tqa (4)

where t ∈ [0, 1] is the interpolation variable such that
slerp(qa,qb, 0) = qa and slerp(qa,qb, 1) = qb.

Next, the position of the kth joint of the ith segment,
denoted x̂E

i,k, is computed by summing the displacement of
all preceding joints according to the following expression,

x̂E
i,k = x̂E

i,0 +

k−1∑
m=0

Rq(qi,m)

 0
0

LE
i /n

 (5)



Fig. 2: Different models to approximate the state of a soft
continuum arm using IMUs: (a) rigid-body model, (b) and
PCC-extended rigid-body model.

Note that the superscript (·)E denotes a variable related to
the PCC-extended rigid-body model.

We define the 0th joint of the 0th segment to be located
at the origin,

x̂E
0,0 =

0
0
0

 (6)

and since the nth joint of segment i is the same as the 0th

joint of segment i+ 1 the following are equivalent,

x̂E
i+1,0 = x̂E

i,n (7)

III. EXPERIMENTS

A. Description of continuum arm

To validate the IMU-based modeling approach presented
in Section II, we constructed a soft continuum arm and
outfitted it with IMU sensors. The arm is a cylinder of
silicon (Smooth Sil 945) with a diameter of 25mm and
of length 660mm. The structure is purely passive, it does
not have any actuators. Eight IMUs (bno055 Bosch) were
evenly spaced along the length of the arm and fixed in
place with screws into flat slots on the arm. We selected
this geometry to make the arm as flexible as possible while
accommodating the 25x20mm footprint of the IMU breakout
boards and allowing them to be spaced 80-100mm apart.
Empirically, this spacing permits a maximum angle of π/2
between adjacent IMUs. The update frequency of the IMUs
is 31Hz, and they are read by an Arduino Mega 2560 using
an I2C channel and an I2C multiplexer. Two motion capture
markers were fixed to the arm at lengths M1 = 360mm and
M2 = 600mm. There were only two motion capture markers
because when we tried to use a higher density of markers,
the motion capture system would mix up the markers. The
motion capture system (Vicon) has a precision of 1mm and
an update frequency of 100Hz.

B. Validation experiments: Motion capture vs. IMU model

To evaluate the accuracy of our models, motion capture is
used as ground truth. While the arm is moved, measurements
from the IMUs and the motion capture system are recorded.
The IMU data is then used to construct models according
to Section II offline. The positions of the motion capture
markers are estimated from the models and compared to
the actual positions recorded by the motion capture system.
In all experiments, error is defined as the Cartesian dis-
tance between the estimated positions of the motion capture
markers and their actual positions. To evaluate how model
performance is affected by the density of IMUs along the
arm, both models are constructed using the data from two,
four, and eight IMUs.

1) Rigid-body model experiment: The rigid-body model is
implemented using two, four, and eight IMUs (and thus with
an equivalent number of segments). The position of the IMUs
along the arm are shown in Table I. We set L0 = 0mm since
the first segment of length L0 (see Fig 2) empirically induces
a vertical error offset. When using two and four IMUs, the
length of the arm can be divided into two and four equal
sections, respectively, with an IMU mounted to the midpoint
of each section. For eight IMUs, when the length of the arm
is divided into 8 equal sections, the segmentation is made
such that the IMUs lie at the endpoints of the sections instead
of the center due to their physical spacing.

2) PCC-extended rigid-body model experiment: The
PCC-extended rigid-body model is tested w.r.t. two variables:
the number of segments, and the number of IMUs. First, we
fixed the number of IMUs to the maximum, i.e. eight IMUs,
and used 8, 16, 32, and 64 segments. Results shown in Fig. 4
suggests that 16 segments are sufficient to approximate the
maximum curvature exhibited by our arm. To explore the
impact of the number of IMUs on pose estimation accuracy,
we generated a 16 segments model using data from two, four,
and eight IMUs. The position of the IMUs used along the
arm are shown in Table I. Results shown in Fig. 5 indicate
that even for the same number of segments (i.e., 16), the
error decreases as the number of IMUs increases.

IMU # Base* 1 2 3 4 5 6 7 8
pos [mm] 0 80 160 240 320 400 480 560 640
2 IMUs E R E R E
4 IMUs E X X X X
8 IMUs E X X X X X X X X

TABLE I: This table shows which IMUs are selected for
a given number of IMUs used to feed each model. Pos
corresponds to the position of the IMU along the arm. “R”
stands for “rigid-body only”, “E” stands for “PCC-extended
rigid-body model only”, and “X” stands for both.
*base is the orientation of the arm’s base, not counted as an
IMU but used in the PCC-extended rigid-body model.

3) Timing synchronization: To ensure the same sampling
frequency on both the IMU model and motion capture
signals, linear interpolation across time is processed on
the model output. The time delay between both signals is



Marker Quartile Rigid-body PCC-extended
M1 (L=360mm) Median 13.3% 10.2%
M1 (L=360mm) Q3 17.7% 13.5%
M2 (L=600mm) Median 11.8% 9.1%
M2 (L=600mm) Q3 16.25% 13.8%

TABLE II: Median and the third quartile (Q3) of the relative
error for 16 segment models generated using using eight
IMUs.

computed using cross-correlation and removed.

C. Conditions of the data acquisition

In a motion capture environment, the arm is fixed, base
up, on an elevating structure (See Fig. 1). Over a 250sec
trial, the arm is moved manually with a stick attached to the
arm between the two motion capture markers. During the
trial 8,000 samples are collected, The median of the arm’s
moving speed is 0.1ms−1 at marker 1 and 0.2ms−1 at marker
2, reaching speeds up to 0.6ms−1.

The arm is moved in different modes such as oscillating
(going back and forth on each side of the structure, the tip
reaching positions below the base w.r.t the z-axis), buckling
(pseudo vertical position and contractions along the z-axis),
and “dog chasing its tail” (the arm making circles around
the z-axis while its shape forms a question mark).

IV. RESULTS

A. Main takeaways

1) Overall estimation performance for both models: The
lowest error for the rigid-body model was found using eight
IMUs with a median error of 48mm. The lowest error for
the PCC-extended rigid-body model was found using eight
IMUs with a median error of 37mm. As described in Table II,
the error normalized by the distance along the arm, which
we refer to as relative error, decreases from L = 360mm
to L = 600mm for both models. The PCC-extended rigid-
body model is consistently more accurate than the rigid-body
model, with approximately 25% lower error.

2) Computation considerations: Both models can be com-
puted at a rate of 40Hz for two, four, and eight IMUs using
a personal computer with an Intel® Core™ i7-10510U Pro-
cessor (4.90 GHz) and 16GB of RAM. The PCC-extended
rigid-body model can run real-time for up to 64 segments -
we haven’t tested further.

B. Results for the rigid-body model

As expected, accuracy increases with the density of IMUs
for both models. However, the accuracy doesn’t increase
linearly: for marker #1, the median relative error for two,
four, and eight IMUS is 44.4%, 15.0%, and 13.6%, respec-
tively (Fig. 3). Furthermore, the evolution of the relative error
decreases along the arm. For eight IMUs at L = 360mm, the
relative error is 13.3% whereas at L = 600mm, the relative
error is 11.5% (Tab. II).

Fig. 3: Error of the rigid-body model with two, four, eight
IMUs. The blue box-plots corresponds to the error on the
marker 1. The pink box-plots corresponds to the error on
the marker 2.

C. Results for the PCC-extended rigid-body model

The PCC-extended rigid-body model has two parameters
to define: the number of segments and the number of IMUs.
We will first present the effects of changing the number of
segments using eight IMUs, and then present the effects of
changing the number of IMUs using 16 segments.

1) Effects of changing the number of segments using eight
IMUs (Fig. 4): The accuracy of the model increases with the
number of segments until a plateau is reached. For example,
while the Q3 of the error for eight segments is 16.9%, for
16 segments and more, the Q3 of the error remains similar
at 13.5%.

2) Effects of changing the number of IMUs using 16
segments (Fig. 5): Similar to the rigid-body model, error
decreases as the number of IMUs increases. However, unlike
the rigid-body model, the error continues decreasing signif-
icantly between four and eight IMUs. The median of the
relative error decreases by 10% between markers 1 and 2.

3) The error in pose estimation along the arm: The
absolute error increases along the length of the arm. For
eight IMUs and 16 segments, at L = 360mm, the Q3 of the
absolute error is 48mm whereas at L = 600mm, the Q3 of
the absolute error is 83mm (Tab. II). Fig 6 shows a 3D hull
containing the Q3 of the PCC-extended rigid-body model
estimation.

However, if we consider the error normalized by the length
moving from the base along the arm, the relative error
decreases. For eight IMUs and 16 segments, at L = 360mm,
the Q3 of the relative error is 10.2% whereas at L = 600mm,
the Q3 of the relative error is 9.1% (Tab. II).



Fig. 4: Using PCC-extended rigid-body model with eight
IMUs and 8, 16, 32, and 64 segments. The blue box-plots
corresponds to the error on the marker 1. The pink box-plots
corresponds to the error on the marker 2.

Fig. 5: Error of the 16 segments PCC-extended rigid-body
model with two, four, and eight IMUs. The blue box-plots
corresponds to the error on the marker 1. The pink box-plots
corresponds to the error on the marker 2.

V. DISCUSSION

A likely cause of error for the rigid-body model is the
length of the segments for high bending values. Bending
reduces the distance between the joints, whereas the rigid-
body model keeps it constant. The PCC-extended rigid-body
model captures the overall shape better, but since the model is
a serial chain, a small error near the base propagates through
the entire arm. This is why the error at the end-effector tends
to be larger than that at the motion capture marker near the
middle of the arm (see Fig. 6).

Another likely source of error is the orientation of the arm
relative to gravity. In our experiments the arm was mounted
such that it points upwards from the base, causing the weight
of the arm to induce larger non-constant curvatures near
the base. This curvature near the base leads to errors that
propagate and grow along the length of the arm. We could

Fig. 6: 3D hull containing 75% of the PCC-extended rigid-
body model estimation (error below the Q3) for eight IMUs
and 16 segments. The arm pose is reconstructed using motion
capture data.

potentially reduce this error by mounting the arm such that it
points downward instead, or by changing the IMU positions
along the arm such that the density of IMUs increases as we
get closer to the arm’s base.

IMU drift might also generate errors in the IMU measure-
ments, especially at the base. The IMU we used, the bno055,
auto-calibrates in the background by reaching different po-
sitions [27]. The first IMUs along the arm have a limited
range of positions, which might reduce the quality of their
calibration and therefore increase the error.

The shape of the arm is computed quickly enough to
provide a feedback signal to a real-time (40Hz) closed-
loop controller for both models, allowing real-world appli-
cations. Computational efficiency could be further improved
by ignoring the real part of the quaternions and keeping
only a vector along which the arm would be aligned. Then
linear interpolation could be used between these vectors,
which is computationally 3 times lighter than spherical linear
interpolation using MATLAB implementation [28].

Fig. 5 shows that increasing the number of actual IMU
sensors used to generate a 16 segment model reduces the
model’s error. However, Fig. 4 shows that increasing the
number of segments beyond 16 does not noticeably reduce
the error. We interpret this to mean that a 16 segment rigid-
body model is a suitable approximation of a PCC model
of this arm. Therefore, we expect that for 16 or more
IMUs, a rigid-body model and a continuous PCC model
will approximate the shape of the arm with roughly equal
accuracy. This “maximum number of IMUs” will vary from
arm to arm depending on its geometry and bending stiffness.
Future work could develop a method to compute this number
for any soft arm as a function of its maximum curvature
and some tolerated error threshold. There are computation
concerns when adding additional IMUs, however. Adding
more IMUs could reduce the reading frequency, especially



if using a Micro Controller Unit. This could be compensated
by using higher speed protocols than I2C such as SPI.

VI. CONCLUSION

In this paper we show that IMUs – inexpensive, avail-
able off-the-shelf, and easy-to-integrate – can be used for
proprioception of soft robot arms. Using a rigid-body model
generated from IMU data and spherical linear interpolation,
we were able to estimate the position of the end-effector
of a soft robot arm with a median error of less than 10%
of the arm’s length. Future work could employ methods to
improve the accuracy of IMU-based shape estimates. Future
work could also investigate ways to make IMUs easier to
integrate into soft robots. This could be done by mounting
the IMUs on small custom PCBs, and by integrating an entire
string of IMUs as a self-contained sensor.
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